

ETHYL BREVIFOLIN CARBOXYLATE AND OTHER CONSTITUENTS FROM *ACER OBLONGUM* LEAVES

NAZNEEN PARVEEN,* NIZAM U. KHAN,† T. INOUE* and M. SAKURAI†

*Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India; †Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41, Shinagawa-Ku, Tokyo 142, Japan

(Received 25 April 1988)

Key Word Index—*Acer oblongum*; Aceraceae; 1,2,3,5-tetrahydro-7,8,9-trihydroxy-3,5-dioxocyclopenta[c] [2]benzopyran-1-carboxylic acid ethyl ester; ethyl brevifolin carboxylate; D-3-O-methyl chiroinositol; structural determination.

Abstract—A new compound, ethyl brevifolin carboxylate, along with known compounds D-3-O-methyl chiroinositol, β -amyrin, β -sitosterol, apigenin, kaempferol, ethyl gallate and quercetin were isolated from *Acer oblongum* and identified from spectral and chemical data.

INTRODUCTION

Acer is a large genus of trees and a few shrubs, chiefly distributed in the north temperate region. About 15 species of *Acer* occur in the Himalayas [1]. Kupchan *et al.* have isolated a novel triterpene from the tumour inhibitory saponin of *A. negundo* [2]; the plant also contains novel glycosides [3-5]. Two antibacterial glycosides have been isolated from *A. ginnala* [6].

Since no work has been reported on *A. oblongum*, we now report the isolation and characterization of a new tannin, ethyl brevifolin carboxylate (**1**) along with other known compounds from this plant.

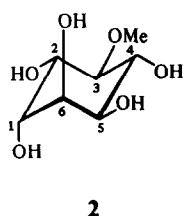
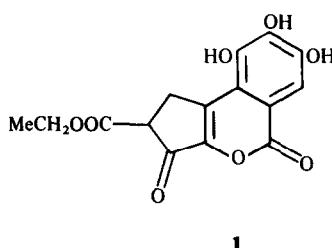
RESULT AND DISCUSSION

Extensive chromatography of the petrol extract of air-dried and powdered leaves of *A. oblongum* yielded β -sitosterol and β -amyrin [7]. The ethyl acetate extract on CC followed by prep. TLC gave a new compound along with apigenin, kaempferol, ethyl gallate and quercetin.

The new compound **1** gave a positive colour with ferric chloride reagent and its mass spectrum showed a $[M]^+$ at m/z 320 ($C_{15}H_{12}O_8$) and a base peak at m/z 274 [$M - MeCH_2OH$]⁺. The IR spectrum exhibited a broad band between 3400-3000 cm^{-1} indicative of phenolic hydroxyls. IR bands appearing at 1695 and 1660 cm^{-1} are attributable to the α, β -unsaturated carbonyl group and the carbonyl of a lactone moiety, respectively. Another carbonyl appeared at 1735 cm^{-1} . The ¹H NMR spectrum (DMSO-*d*₆) of **1** showed a triplet at δ 1.18 ($J = 7.3 \text{ Hz}$, 3H) for an ester Me group, a quartet at δ 4.08 ($J = 7.3 \text{ Hz}$, 2H) for a methylene proton and a doublet of doublet for one hydrogen at δ 4.40 ($J = 2$ and 7.7 Hz). The aromatic hydrogen appeared as a singlet at δ 7.30. The ¹³C NMR spectrum of **1** showed a singlet at δ 13.813 for a methyl carbon and at δ 37.037 for a methylene carbon. The signal for the CH and CH₂ carbon of the five-membered ring appeared at δ 48.665 and δ 60.473, respectively, and for the aromatic CH at δ 108.318. The

signals for other aromatic and sp^2 carbons appeared at δ 113.114, 114.951, 130.387, 140.148, 143.518, 145.749, 149.711, 160.048, 171.887 and 192.789.

Compound **1** on treatment with 10% HCl gave a yellow precipitate, mp > 245° which was comparable with that of an authentic sample of brevifolin carboxylic acid [8-10]. Compound **1** was methylated with diazomethane to give a trimethyl ether, mp 136°. It was comparable with the reported trimethyl ether of brevifolin carboxylic acid ethyl ester [11]. Compound **1** is, therefore, characterized as 1,2,3,5-tetrahydro-7,8,9-trihydroxy-3,5-dioxocyclopenta[c][2]benzopyran-1-carboxylic acid ethyl ester. This constitutes the first report of compound **1** from nature.



Compound **2**, $C_7H_{14}O_6[M+1]^+$ m/z 195 (100), showed a broad band in IR for OH at 3300 cm^{-1} and had $[\alpha]_{D}^{H_2O} + 60$. The ¹H NMR spectrum (DMSO-*d*₆) of **2** showed a singlet at δ 3.35 assignable to the proton of the methoxy group. The six CH protons appeared between δ 3.25-3.9. The hydroxyl protons which were exchangeable with D₂O appeared at 4.26, 4.31, 4.43 (*q*) and 4.63 (*q*). In the ¹³C NMR spectrum (DMSO-*d*₆) the methylene carbon appeared at δ 56.937 (*q*) and other carbons appeared as doublets at δ 68.002, 70.476, 71.903, 72.131, 73.27 and 80.18. These data compared well with those of D-3-O-methyl chiroinositol [12]. The difference in chemical shifts between literature data and compound **2** may be due to the difference in the solvent used in measurements.

The details about the isolation and characterization of commonly occurring β -amyrin, β -sitosterol, ethyl gallate, apigenin, kaempferol and quercetin are given in Experimental.

EXPERIMENTAL

Mps: uncorr. NMR [δ (ppm), J (Hz)] were recorded using TMS as int. std. MS were determined at 70 eV.

Extraction and separation. Dried and powdered leaves of *A. oblongum* (2 kg) collected from the Royal Botanical Garden, Godawari, Lalitpur, Nepal were extd several times with hot

MeOH. The MeOH ext was evapd under red. pres. to yield a dark green mass. This was treated with petrol (60–80°), C₆H₆, EtOAc and then with MeOH.

The petrol and C₆H₆ fraction was chromatographed on a silica gel column and eluted with petrol–C₆H₆ (1:1) and benzene. The compound eluted with petrol–C₆H₆ (1:1) crystallized from CHCl₃–EtOH as colourless needles, mp 198°, and gave a violet red Liebermann–Burchard reaction. It was comparable (IR, MS, ¹H NMR) with an authentic sample of β -amyrin [7]. Another compound was eluted with C₆H₆, it crystallized from CHCl₃–EtOH as colourless needles, mp 137° and was found to be comparable (mmp, IR, ¹H NMR, MS) with β -sitosterol.

The EtOAc fraction gave an orange colour with Mg–HCl. The fraction was adsorbed on silica gel and transferred to a column of silica gel prepared with C₆H₆ and eluted with C₆H₆, C₆H₆–EtOAc (9:1, 4:1, 1:1) and EtOAc, mp 346°. It was comparable (mmp, TLC) with apigenin. The fraction eluted with C₆H₆–EtOAc (9:1, 4:1) showed the presence of two components on TLC [C₆H₆–pyridine–HCO₂H (BPF), 36:9:5] which were further sepd by prep. TLC. One of these was comparable with kaempferol, mp 276–278°, R_f = 0.53 (BPF, 36:9:5) and the other was identical (mmp, MS, ¹H NMR, ¹³C NMR) with authentic Et gallate. The C₆H₆–EtOAc (1:1) eluent gave a compound mp 315°, which was comparable (mp, TLC) with authentic quercetin.

Ethyl brevifolin carboxylate (1). Elution of the above column with EtOAc gave compound 1 as yellow needles (EtOAc–Me₂CO, mp 250°, brown colour under UV light and blue colour with FeCl₃, R_f = 0.5 [silica gel, toluene–HCO₂Et–HCO₂H (TEF), 5:4:1], IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{−1}: 3400–3000, 1735, 1695, 1660, 1595, 1520, 1270, 1230, 1050. MS m/z (rel. int.): 320 (50, [M]⁺, C₁₅H₁₂O₈), 274 (100, [M – MeCH₂OH]⁺, 246 (30), 218 (40), 204 (20), 190 (16), 77 (20), 73 (20). ¹H NMR (DMSO – d_6): 1.18 (3H, t, J = 7.3 Hz, Me), 4.08 (2H, q, J = 7.3 Hz, CH₂), 4.40 (1H, dd, J = 2 and 7.7 Hz, H-1), 7.30 (1H, s, arom, H),

¹³C NMR (DMSO – d_6): 13.813 (Me), 37.037 (CH₂), 40.665 (CH), 60.473 (CH₂), 108.318 (arom CH), 113.114, 114.951, 138.387, 140.148, 143.518, 145.749, 149.711, 160.048, 171.887, 192.789 (arom C \times 10).

Hydrolysis. Compound 1 (5 mg) was heated with 10% HCl. After 1 hr the yellow ppt. of brevifolin carboxylic acid appeared which was filtered and washed with H₂O and dried.

Methylation. To compound 1 (5 mg) in MeOH, CH₂N₂–Et₂O soln was added. After 6 hr solvents were removed and the reaction product crystallized from MeOH. The per Me ether of 1 melted at 136° and compared well with that of the tri Me ether of Et brevifolin carboxylate (lit mp 135°) [11]. The sample was not sufficient for spectral studies.

D-3-O-methyl chiroinositol (2). The MeOH ext. was dried and then treated with H₂O. The H₂O sol. fraction was transferred to a cellulose column and eluted with H₂O, H₂O–MeOH (1:1) and MeOH. Elution with H₂O–MeOH (1:1) followed by the crystallization from MeOH gave D-3-O-methyl chiroinositol as colourless cube-shaped crystals, mp 183°, R_f = 0.09 (TEF, 5:4:1), $[\alpha]_{D}^{20} + 60$, C₇H₁₄O₆ ([M]⁺ m/z 194); IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{−1}: 3300 (br, OH); MS m/z (rel. int.): 195 ([M + 1]⁺, 100), 194 ([M]⁺, C₇H₁₄O₆), 177 (10), 159 (15), 127 (30), 109 (25), 86 (15); ¹H NMR (DMSO – d_6): δ 3.35 (s, 3H, OMe), 3.15–3.9 (6H, –CH proton), 4.26, 4.31, 4.43 (q), 4.63 (q, exchangeable D₂O), ¹³C NMR (DMSO – d_6): δ 56.99 (q, CH₃), 68.002 (d, C-1), 70.48 (d, C-5), 71.903 (d, C-6), 72.131 (d, C-3), 73.27 (d, C-4), 80.180 (d, C-2).

Acknowledgements—Prof. S. M. Osman (Chairman, Department of Chemistry, A. M. U., Aligarh) and Dr K. R. Rajbhandari (Taxonomist, Royal Botanical Garden, Godawari, Lalitpur, Nepal are gratefully acknowledged for providing necessary facilities and identification of plant material.

REFERENCES

1. Sastri, B. N. (ed.) (1984). *The Wealth of India* Vol. 1, p. 21. CSIR, New Delhi.
2. Kupchan, S., Morris, T., Mitsuo, S. R. M. and Steyn, P. S. (1971), *J. Org. Chem.* **36** 1972.
3. Inoue, T., Ishidate, Y., Fujita, M., Kubo, M., Fukushima, M. and Nagai, M. (1978) *Yakugaku Zasshi*, **98**, 41.
4. Kubo, M., Nagai, M. and Inoue, T. (1983) *Chem Pharm Bull* **31**, 1917.
5. Nagai, M., Kubo, M., Fujita, M., Inoue T. and Matsuo, M. (1978) *Chem Pharm Bull* **26**, 2805.
6. Chungen, S., Ning, Z., Rensheng, Xu., Guoiang, S., Sheng yu and Shanhai, H. (1982) *Huaxue Xuebao* **40**, 1142.
7. Prakash, L. and Garg, G. (1981) *J. Indian Chem. Soc. (A)* **LVII** **90** (B) **LVIII**, 726.
8. Schmidt, O. T. and Eckert, R. (1956) *Z. Naturforsch* **11b**, 757.
9. Schimdt, O. T. and Bernauer, K. (1954) *J. L. Ann. Chem.* **588**, 211.
10. Schimdt O. T. Eckert, R. Guenther, E. and Fieser, H. (1967) *J. L. Ann. Chem.* **706**, 204.
11. Schimdt, O. T. and Eckert, R. (1958) *J. L. Ann. Chem.* **618**, 71.
12. Dorman, D. E., Angyal, S. J. and Roberts, J. D. (1970), *J. Am. Chem. Soc.* **92**, 1351.